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A problem in the design of printed circuits is recast into a problem in applied
graph theory. A catalog of diagrams that can be used to obtain efficient realiza-

tions of many circuit diagrams is presented.

l. Introduction

Arranging the terminals of a printed circuit so that
none of the connecting lines cross each other can be
taken as a problem in applied graph theory.

To agree with the terminology of graph theory let
us call terminal codes nodes, connecting lines edges, and
when some nodes and edges are given let us call the re-
sulting collection a graph.

A given graph, then, presents a question as to whether
or not it is possible to draw a picture of the graph on one
side of one sheet of paper, for example, with no edges
crossing.

Usually the answer is no. So the next question is how
to get around it. One possibility is to draw a picture with
the number of crossings minimized and then drill holes
in the board. The literature has a few studies of the
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problem of minimizing the number of crossings (Ref. 1)
but these results may still be far from best possible.

Another possibility is to use several sheets of paper,
picturing the nodes over again on each sheet but each
edge on only one sheet. Here the problem is to minimize
the number of sheets. The literature has better results on
this problem, and in some cases the best possible (Ref. 2).

A third possibility is the subject of the present study.
It is to picture the graph on only one sheet of paper by
allowing each node to appear in several places. Thus by
using multiplace nodes any graph can be pictured on one
sheet with no edges crossing. The problem is to minimize
the number of places. There seems to be little mention of
this problem in the literature between 1890 when Heawood
(Ref. 3) drew the basic example of 12 two-place nodes
with all 66 edges, and quite recently (Ref. 4) when some
interesting cases are mentioned as unsolved, but with no
new results since Heawood.

97



In actually realizing some circuitry there is also the
question of making connection to the nodes from the
outside, and presumably this could present real difficul-
ties if the circuitry is to be miniaturized. One separate
sheet for the nodes would be enough if each node could
be spread out in a strip of conducting material, and then
connected at certain places to the sheet on which the
graph is pictured.

Two sheets will suffice for any graph: one sheet for
access to the nodes from the outside, and one sheet to
picture the graph with multiplace nodes.

These are the first entries for a catalog of pictures that
hopefully will be of use to the circuit designer. Any one
of these graph picturing problems is quite likely to be
very troublesome by itself. The designer can look in the
catalog and find a picture close enough to what he needs
to at least keep it on only two sheets and maybe econ-
omize on multiplace nodes as well.

To start with a well-known example, suppose it is re-
quired to draw all the edges from nodes A,B,C to nodes
X,Y,Z. After a few trials it will look impossible as in this
sketch:

But if we allow C to be a 2-place node, it looks too easy,
as in this sketch:

So to have a more difficult example, suppose we require
all the edges from nodes A,B,C,D,E.F,G to nodes 1,2,3,4,
5,6,7.8 allowing each node to be 2-place. This graph is
designated K; ¢ and pictured 2-place in Fig. 1.
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The notation K, refers to a graph having a + b nodes
with all the edges from a of them to b of them. Figure 1
shows K: . pictured with 2-place nodes and that will go
into the catalog. What makes it interesting is the fact that,
with nodes allowed no more than 2 places each, Ks 5 is
impossible. This bounding impossibility, and most of the
others like it, will become easy to prove using the famous
formulaV — E + F = 2, often called Euler’s formula.

. V—_E+F=2

By common usage E is the number of edges, F is the
number of faces, and V is the number of vertices. In the
present context one place at which a node is pictured will
count as one vertex.

An undivided region will count as one face. A line seg-
ment drawn with a vertex at each end will count as one
edge. Let it be understood from here on that an edge is
not meant to cross, nor even touch, another edge in the
picture.

The formula holds for any connected configuration of
vertices, edges, and faces on a surface like the sphere,
plane, or one side of a sheet of paper. This is one of those
situations where minimum conditions result in the sim-
plest proof. So here is proof by induction that V. — E + F
= 2 holds for any connected configuration of vertices,
edges, and faces satisfying conditions 0 and I:

0. An edge which has both ends on the same vertex will
divide the surface into two regions.

1L.vV>0

The induction is on the number of edges. When E = 0,
connectedness requires V < 2; so, we can only have
V=1LF=1landV—E+F=1-0+1=2 When
E = 1 there are two possible configurations, namely,
withV =2 E=1F = 1, and with

V =1, E = 1, and as we know by conditions 0, F = 2,

Now for the inductive step let us be given a connected
configuration with E edges, V vertices, and F faces and
presume the formula holds for all connected configura-
tions with fewer than E edges, under condition 0 and 1.
Select any edge and consider two cases.

Case 1. The selected edge has different vertices at its

two ends. In this case we shrink the edge to nothing and
merge the two vertices into one vertex, thereby reducing
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the number of edges by one and reducing the number of
vertices by one. This keeps the configuration connected
and preserves conditions 0 and 1 so by the inductive
presumption (V — 1) = (E — 1) + F = 2,andV — E
+F =2

Case I1. The selected edge has the same vertex at both
ends. In this case erasing the edge will reduce the number
of edges by one and reduce the number of faces by one
because of condition 0. But the configuration will remain
connected and conditions 0 and I will be unaffected. So
by our inductive presumption V. — (E — 1) + (F — 1)
= 2 and thereforeV — E + F = 2.

Thus V — E + F = 2 for any connected configuration
on a surface which satisfies condition 0.

Observe that a configuration with several parts on a
surface satisfying condition 0 would still satisfy the in-
equality V. — E + F > 2, because it would still have
V — E + F = 2 for each connected part.

ll. K., »with 2-place Nodes

We can lose no generality by considering only pictures
in which every face has three or more edges, and now
that we want to find bounds on the most that can be
pictured with K, , we can derive even more limitation. In
K,., an edge only connects one of the a nodes with one of
the b nodes so that a face will have an even number of
edges. Thus for K,;, we can count the number of inci-
dences of a face with one side of an edge and find from
the edges that the number is 2E, while from the faces the
number is > 4F.

The inequality 2E > 4F together with 4V — 4E
+ 4F > 8 boils down to a very useful relationship:
E < 2V — 4, which applies to K, , as longasa + b > 2.
Again, counting edges is easy for K, and we have E =
ab.

Now here are some bounding examples of what graphs
K., can be pictured using m-place nodes in case we re-
quire m < 2. It makes V < 2(¢ + b) and so it would be
not impossible only for values of ¢ and b satisfying:

ab < 4a+b-—-1)
The impossibility of picturing K « with 2-place nodes is

now established because the formula is not satisfied with
a and b both > 8.
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The values allowed by the formula are as follows:

a =7 requires b <8
a =6 requires b <10
a=35 requires b < 16

and then a < 4 allows b as large as space permits.

With Fig. 2 showing K;., Fig. 3 showing K., Fig. 4
showing K. ., and Fig. 5 showing a scheme for ¢ < 4 and
arbitrary I, we have sharp bounding examples.

IV. K., One of the Worst Cases

The complete graph, denoted K, has n nodes with an
edge for every pair of distinet nodes. Regarding an arbi-
trary graph as a subgraph of the complete graph on the
same nodes makes it clear that no graph on n nodes can
demand more vertices than K, to be pictured with multi-
place nodes.

Thus we get a rough outline by asking for the minimum
number of vertices needed for K,. Table 1 and the cor-
responding figures show the best obtained so far.

The question marks in Table 1 indicate tried without
success, whereas the blank spaces just mean not tried yet.

Now to explain the column headings in Table 1. The
numbers under ¢ are taken from Ref. 2. Given n the
number of nodes in the complete graph, t is the minimum
number of sheets that would be needed. Beineke gives

l: n+7 ]
6
for large n except for the question marks when n = 4

{mod 6) or n = 9. We could put the separate sheets side
by side on one sheet and always have true min V < nt.

The true min V is the actual minimum number of
vertices for any picture of K, using multiplace nodes.

The number in the picture V column gives the number
of vertices in a multiplace picture of K, which has actually
been drawn.
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The formula V has been calculated from E = (") as the

smallest integer satisfying

L Et6
23

This lower bound for the minimum V has been derived
from our formula V. — E + F = 2 as follows.

A picture minimizing V will nced at least E = (%) edges,
and any more edges could only get in the way. So, with-
out loss of generality. we can erase any edge with the
same vertex at both ends, or any extra edges between the
same pair of vertices—with the result that any face will
touch at least three edges. Counting edge-face incidences
gives us the inequality 3F < 2E. Putting this together
with the formula 3V — 3E + 3F > 6 gives us 3V — 3E
+ 2E > 6 which says 3V > E + 6. Thus in general we
have formula V < true min V < nt.

A word of explanation about the figures. w+1l + x+2
+ y*3 + z:4 = V means that the picture is using w
1-place nodes, x 2-place nodes, y 3-place nodes, and
z 4-place nodes, where of course, v + x + y + z = n.

When the same figure is listed for several values of n
it means that a picture for the smaller case can be ob-
tained by simply erasing some vertices and edges. For
example to get a picture of K, with V = 3+1 + 62 just
erase the 3 vertices each, of nodes A,B, and C from Fig. 8,
together with the edges which end on A, B, or C.
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V. The Impossibility Proofs

Proot is required when the true min V is larger than the
formula V.

For K, it is almost immediate that V = 7 is impossible.
It could only be pictured with V = 5-1 + 1-2; but then
erasing the 2-place node and edges to it would leave K,
pictured with V. = 5. Similarly the impossibility of pic-
turing K: with V = 9 is proved by reducing to the pre-
vious case.

By contrast the proof for K, is ditficult—in fact, it is
mentioned as an unsolved problem in (Ref. 4). Since a
more elegant proof may be presented in part 11, only a
brief sketch is given here, as follows.

First, the previous cases would force a picture of K, to
haveV = 4+1 + 5:2.

Next, naming the l-place nodes W, X)YZ, and the
2-place nodes 1,2,3,4,5, the result in (Ref. 5) helps to rule
out all but a few apportionments of the numbered vertices
into the four regions formed by the six edges connecting
the lettered vertices.

Then an exhaustive comparison of the valences reduces
it to the two partial pictures in Fig. 10. And by some
further direct exhaustion, it turns out that these cannot
be completed.
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Table 1. Compared bounds for K,

t n E FormulaV PictureV TrueminV  Reference
1 4 &6 4 4 4 Fig. 5

2 5 10 6 Fig. 7

2 6 15 7 Fig. 7

2 7 21 9 10 10 Fig. 7

2 8 28 12 12 12 Fig. 7

3 9 36 14 15 15 Fig. 8

3 10 45 17 18 ? Figs. 8and 9
3 11 55 21 21 21 Fig. 8

3 12 66 24 24 24 Figs. 8 and 6
3 13 78 28 28 28

3 14 91 33 33 33

3 15 105 37 38 ?

? 16 120 42

4 17 136 48

4 18 153 53 53 53 Fig. 11

4 19 171 59 59 59 Fig. 11

4 20 190 66

4 21 210 72

P 22 231 79

5 23 258 87

5 24 276 94

5 25 300 102
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Fig. 9. V =21 + 8.2 Fig. 10. Last stage of the impossibility proof for K,
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